GRACE-FO Antenna Phase Center Modeling and Precise Orbit Determination with Single Receiver Ambiguity Resolution

Author:

Jin BiaoORCID,Li Yuqiang,Jiang Kecai,Li Zhulian,Chen Shanshan

Abstract

Precise knowledge of the phase center location of the global navigation satellite system (GNSS) antenna is a prerequisite for precise orbit determination (POD) of the low Earth orbit (LEO) satellite. The phase center offset (PCO) and phase center variation (PCV) values for the LEO antenna obtained from ground calibration cannot reflect the error sources encountered in the actual spacecraft environment. PCV corrections are estimated by ionosphere free (IF) carrier phase post-fit residuals of reduced dynamic orbit determination. Ambiguity resolution (AR) plays a crucial role in achieving the best orbit accuracy. The single receiver AR concept is realized using wide-lane (WL) and narrow-lane (NL) bias products. Single difference (SD) observations between satellites are applied to remove the receiver dependent phase bias. SD AR and traditional double difference (DD) AR methods are applied to fix the ambiguities. The recovered SD and DD IF ambiguities are taken as pseudo-observations to constrain the undifferenced IF ambiguity parameters in the POD process. The LEO orbits based on float ambiguity (FA), SD, AR, and DD AR are investigated. One year’s data collected by the Gravity Recovery And Climate Experiment Follow-On (GRACE-FO) mission and GPS precise products provided by the Center for Orbit Determination in Europe (CODE) were analyzed. Precise orbit generated by the Jet Propulsion Laboratory (JPL), independent satellite laser ranging (SLR), and K-band ranging (KBR) measurements were utilized to assess the orbit accuracy. More than 98% of SD WL and 95% of SD NL ambiguities are fixed, which confirms the good quality of the bias products and correctness of the SD AR method. With PCV corrections, the average phase residuals of DD and SD AR solutions are 0.13 and 0.41 mm, which indicates improved consistency between applied models and observations. Compared with JPL’s orbit, the SD AR orbits achieve the accuracy of 6.0, 6.2, and 5.1 mm in along-track, cross-track, and radial directions. The SD AR solutions show an average improvement of 18.3% related to the FA orbits while 6.3% is gained by the DD AR approach. The root mean squares (RMSs) of SLR residuals for FA, DD AR, and SD AR solutions are 11.5, 10.2, and 9.6 mm, which validate the positive effect of AR on POD. Standard deviation (STD) of KBR residuals for SD AR orbits is 1.8 mm while 0.9 mm is achieved by the DD AR method. The explanation is that the phase bias products used for SD AR are not free of errors and the errors may degrade the KBR validation. In-flight PCV calibration and ambiguity resolution improve the LEO orbit accuracy effectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3