Precise orbit determination of integrated BDS-3 and LEO satellites with ambiguity fixing under regional ground stations

Author:

Lai WenORCID,Huang Guanwen,Wang Le,Qin Zhiwei,Li Run,Xie Shichao,She Haonan

Abstract

Abstract The ambiguity resolution (AR) significantly enhances the accuracy of precise orbit determination (POD). There have been numerous studies of different forms of POD: double-difference (DD), single-difference (SD), and un-differenced (UD) AR methods for global navigation satellite systems (GNSS) or low earth orbit (LEO). However, challenges persist in the integrated POD (IPOD) of the GNSS and LEO at regional ground stations. These challenges include the frequent selection of dual receiver-satellite pairs in DD methods, and time-varying hardware biases in LEO receivers for UD methods. In addition, the SD AR method has not been explored in IPOD, resulting in unfixed ambiguities. In this study, we investigated the feasibility and performance enhancement of AR in the BeiDou Navigation Satellite System (BDS) and LEO IPOD under regional ground stations using simulated ground and onboard observations. First, we introduce AR models applicable to BDS and LEO IPOD and analyze the applicability of different AR models for IPOD under regional ground stations. We designed a study to utilize SD ambiguity, which eliminates the time-varying hardware bias of the LEO receiver end, to estimate the uncalibrated phase delay (UPD) of the satellite end. Furthermore, we designed the BDS-3 and LEO constellations with 24 regional ground stations in China and simulated seven days of observations. Subsequently, the narrow-lane (NL) UPD quality and AR performance were analyzed, and a solution with satisfactory stability and residual distribution was obtained, enabling the implementation of SD AR. The daily fixed rate for wide-lane ambiguities exceeded 99%, while for NL ambiguities it surpasses 86%. After fixing ambiguities, the BDS-3 orbit’s along-track and cross-track components significantly improved. Simultaneously, LEO orbit solutions improved by over 20% in all three directions. Overall, the UPD estimation model using SD ambiguities yielded satisfactory UPD results, enabling AR and significantly enhancing the orbit accuracy of GNSS and LEO.

Funder

Key R&D Program of Shaanxi Province

the Special Fund for Basic Scientific Research of Central Colleges

the Programs of the National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3