Identifying Damaged Buildings in Aerial Images Using the Object Detection Method

Author:

Shi Lingfei,Zhang FengORCID,Xia Junshi,Xie JiboORCID,Zhang Zhe,Du Zhenhong,Liu Renyi

Abstract

The collapse of buildings caused by the earthquake seriously threatened human lives and safety. So, the quick detection of collapsed buildings from post-earthquake images is essential for disaster relief and disaster damage assessment. Compared with the traditional building extraction methods, the methods based on convolutional neural networks perform better because it can automatically extract high-dimensional abstract features from images. However, there are still many problems with deep learning in the extraction of collapsed buildings. For example, due to the complex scenes after the earthquake, the collapsed buildings are easily confused with the background, so it is difficult to fully use the multiple features extracted by collapsed buildings, which leads to time consumption and low accuracy of collapsed buildings extraction when training the model. In addition, model training is prone to overfitting, which reduces the performance of model migration. This paper proposes to use the improved classic version of the you only look once model (YOLOv4) to detect collapsed buildings from the post-earthquake aerial images. Specifically, the k-means algorithm is used to optimally select the number and size of anchors from the image. We replace the Resblock in CSPDarkNet53 in YOLOv4 with the ResNext block to improve the backbone’s ability and the performance of classification. Furthermore, to replace the loss function of YOLOv4 with the Focal-EOIU loss function. The result shows that compared with the original YOLOv4 model, our proposed method can extract collapsed buildings more accurately. The AP (average precision) increased from 88.23% to 93.76%. The detection speed reached 32.7 f/s. Our method not only improves the accuracy but also enhances the detection speed of the collapsed buildings. Moreover, providing a basis for the detection of large-scale collapsed buildings in the future.

Funder

National Key R&D Program of China

KAKENHI

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3