Automatic Detection of Earthquake-Damaged Buildings by Integrating UAV Oblique Photography and Infrared Thermal Imaging

Author:

Zhang Rui,Li HengORCID,Duan KaifengORCID,You Shucheng,Liu Ke,Wang Futao,Hu Yong

Abstract

Extracting damage information of buildings after an earthquake is crucial for emergency rescue and loss assessment. Low-altitude remote sensing by unmanned aerial vehicles (UAVs) for emergency rescue has unique advantages. In this study, we establish a remote sensing information-extraction method that combines ultramicro oblique UAV and infrared thermal imaging technology to automatically detect the structural damage of buildings and cracks in external walls. The method consists of four parts: (1) 3D live-action modeling and building structure analysis based on ultramicro oblique images; (2) extraction of damage information of buildings; (3) detection of cracks in walls based on infrared thermal imaging; and (4) integration of detection systems for information of earthquake-damaged buildings. First, a 3D live-action building model is constructed. A multi-view structure image for segmentation can be obtained based on this method. Second, a method of extracting information on damage to building structures using a 3D live-action building model as the geographic reference is proposed. Damage information of the internal structure of the building can be obtained based on this method. Third, based on analyzing the temperature field distribution on the exterior walls of earthquake-damaged buildings, an automatic method of detecting cracks in the walls by using infrared thermal imaging is proposed. Finally, the damage information detection and assessment system is researched and developed, and the system is integrated. Taking earthquake search-and-rescue simulation as an example, the effectiveness of this method is verified. The damage distribution in the internal structure and external walls of buildings in this area is obtained with an accuracy of 78%.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3