Abstract
Timber assortments are some of the most important goods provided by forests worldwide. To quantify the amount and type of timber assortment is strongly important for socio-economic purposes, but also for accurate assessment of the carbon stored in the forest ecosystems, regardless of their main function. Terrestrial laser scanning (TLS) became a promising tool for timber assortment assessment compared to the traditional surveys, allowing reconstructing the tree architecture directly and rapidly. This study aims to introduce an approach for timber assortment assessment using TLS data in a mixed and multi-layered Mediterranean forest. It consists of five steps: (1) pre-processing, (2) timber-leaf discrimination, (3) stem detection, (4) stem reconstruction, and (5) timber assortment assessment. We assume that stem form drives the stem reconstruction, and therefore, it influences the timber assortment assessment. Results reveal that the timber-leaf discrimination accuracy is 0.98 through the Random Forests algorithm. The overall detection rate for all trees is 84.4%, and all trees with a diameter at breast height larger than 0.30 m are correctly identified. Results highlight that the main factors hindering stem reconstruction are the presence of defects outside the trunk, trees poorly covered by points, and the stem form. We expect that the proposed approach is a starting point for valorising the timber resources from unmanaged/managed forests, e.g., abandoned forests. Further studies to calibrate its performance under different forest stand conditions are furtherly required.
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献