Discrimination of Leaves in a Multi-Layered Mediterranean Forest through Machine Learning Algorithms

Author:

Alvites Cesar1ORCID,Maesano Mauro2ORCID,Molina-Valero Juan Alberto3ORCID,Lasserre Bruno1ORCID,Marchetti Marco1ORCID,Santopuoli Giovanni4ORCID

Affiliation:

1. Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Cda Fonte Lappone snc, 86090 Pesche, Italy

2. Department of Innovation in Biological, Agro-Food and Forest Systems—DIBAF, University of Tuscia, 01100 Viterbo, Italy

3. Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague (CZU), 16 500 Prague, Czech Republic

4. Dipartimento di Agricoltura Ambiente e Alimenti, Università degli Studi del Molise, Via De Sanctis snc, 86100 Campobasso, Italy

Abstract

Terrestrial laser scanning (TLS) technology characterizes standing trees with millimetric precision. An important step to accurately quantify tree volume and above-ground biomass using TLS point clouds is the discrimination between timber and leaf components. This study evaluates the performance of machine learning (ML)-derived models aimed at discriminating timber and leaf TLS point clouds, focusing on eight Mediterranean tree species datasets. The results show the best accuracies for random forests, gradient boosting machine, stacked ensemble model, and deep learning models with an average F1 score equal to 0.92. The top-performing ML-derived models showed well-balanced average precision and recall rates, ranging from 0.86 to 0.91 and 0.92 to 0.96 for precision and recall, respectively. Our findings show that Italian maple, European beech, hazel, and small-leaf lime tree species have more accurate F1 scores, with the best average F1 score of 0.96. The factors influencing the timber–leaf discrimination include phenotypic factors, such as bark surface (i.e., roughness and smoothness), technical issues (i.e., noise points and misclassification of points), and secondary factors (i.e., bark defects, lianas, and microhabitats). The top-performing ML-derived models report a time computation ranging from 8 to 37 s for processing 2 million points. Future studies are encouraged to calibrate, configure, and validate the potential of top-performing ML-derived models on other tree species and at the plot level.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overstepping Existing Classifications: Deciphering Five Severity Tiers in Sugar Maple Tar Spot Disease Through Integrated CNN-GAN Models;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3