Uncovering the Nature of Urban Land Use Composition Using Multi-Source Open Big Data with Ensemble Learning

Author:

Tu YingORCID,Chen Bin,Lang Wei,Chen Tingting,Li Miao,Zhang Tao,Xu Bing

Abstract

Detailed information on urban land uses has been an essential requirement for urban land management and policymaking. Recent advances in remote sensing and machine learning technologies have contributed to the mapping and monitoring of multi-scale urban land uses, yet there lacks a holistic mapping framework that is compatible with different end users’ demands. Moreover, land use mix has evolved to be a key component in modern urban settings, but few have explicitly measured the spatial complexity of land use or quantitively uncovered its driving forces. Addressing these challenges, here we developed a novel two-stage bottom-up scheme for mapping essential urban land use categories. In the first stage, we conducted object-based land use classification using crowdsourcing features derived from multi-source open big data and an automated ensemble learning approach. In the second stage, we identified parcel-based land use attributes, including the dominant type and mixture mode, by spatially correlating land parcels with the object-based results. Furthermore, we investigated the potential influencing factors of land use mix using principal components analysis and multiple linear regression. Experimental results in Ningbo, a coastal city in China, showed that the proposed framework could accurately depict the distribution and composition of urban land uses. At the object scale, the highest classification accuracy was as high as 86% and 78% for the major (Level I) and minor (Level II) categories, respectively. At the parcel scale, the generated land use maps were spatially consistent with the object-based maps. We found larger parcels were more likely to be mixed in land use, and industrial lands were characterized as the most complicated category. We also identified multiple factors that had a collective impact on land use mix, including geography, socioeconomy, accessibility, and landscape metrics. Altogether, our proposed framework offered an alternative to investigating urban land use composition, which could be applied in a broad range of implications in future urban studies.

Funder

Major Program of the National Natural Science Foundation of China

National Natural Science Foundation of China

National Social Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference89 articles.

1. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018

2. World Population Prospects 2019: Highlights,2019

3. World Urbanization Prospects 2018: Highlightshttps://population.un.org/wup/Publications/Files/WUP2018-Highlights.pdf

4. Global Change and the Ecology of Cities

5. Environmental degradation in the urban areas of China: Evidence from multi-source remote sensing data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3