Magnetorheological Fluid of High-Speed Unsteady Flow in a Narrow-Long Gap: An Unsteady Numerical Model and Analysis

Author:

Zheng PengfeiORCID,Hou Baolin,Zou Mingsong

Abstract

To investigate the unsteady flow field generated by magnetorheological (MR) fluid of a high-speed unsteady laminar boundary layer flow in a narrow-long gap of the magnetorheological absorber (MRA), a new unsteady numerical model is proposed. The gap has magnetic-field-activated and inactivated regions, with MR fluid flowing as bi-viscous (non-Newtonian) and Newtonian fluid. The unsteady flow field is described by the unsteady incompressible governing partial differential equation (PDE) and initial-boundary conditions with the moving boundary. The space-time solution domain is discretized using the finite difference method, and the governing PDE is transformed into implicit partial difference equations. The volume flow rate function is constructed to solve numerical solutions of pressure gradient and fluid velocity based on mass conservation, the continuity equation, and the bisection method. The accuracy of unsteady numerical model is validated by the experiment data. The results show that the fluid acceleration profiles along the gap’s height are non-uniform distribution. Further, the volume flow rate and excitation current has a significant impact on the dynamic distribution of fluid velocity profiles, and the moving boundary makes the flow field asymmetric about the central plane. Furthermore, as the transition stress increases, the thickness of the pre-yield region in the activated region increases. There is also a transition flow phenomenon in the activated region as the volume flow rate increases. Finally, the unsteady numerical model has good stability and convergence.

Funder

National Basic Research Program of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3