Abstract
Several phenomena in nature are subjected to the interaction of various physical parameters, which, if these latter are well known, allow us to predict the behavior of such phenomena. In most cases, these physical parameters are not exactly known, or even more these are unknown, so identification techniques could be employed in order to estimate their values. Systems for which their inputs and outputs vary both temporally and spatially are the so-called distributed parameter systems (DPSs) modeled through partial differential equations (PDEs). The way in which their parameters evolve with respect to time may not always be known and may also induce undesired behavior of the dynamics of the system. To reverse the above, the well-known adaptive boundary control technique can be used to estimate the unknown parameters assuring a stable behavior of the dynamics of the system. In this work, we focus our attention on the design of an adaptive boundary control for a parabolic type reaction–advection–diffusion PDE under the assumption of unknown parameters for both advection and reaction terms and Robin and Neumann boundary conditions. An identifier PDE system is established and parameter update laws are designed following the certainty equivalence approach with a passive identifier. The performance of the adaptive Neumann stabilizing controller is validated via numerical simulation.
Funder
Tecnológico Nacional de México
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献