An Optimized Decision Support Model for COVID-19 Diagnostics Based on Complex Fuzzy Hypersoft Mapping

Author:

Saeed MuhammadORCID,Ahsan MuhammadORCID,Saeed Muhammad HarisORCID,Rahman Atiqe UrORCID,Mehmood AsadORCID,Mohammed Mazin AbedORCID,Jaber Mustafa MusaORCID,Damaševičius RobertasORCID

Abstract

COVID-19 has shaken the entire world economy and affected millions of people in a brief period. COVID-19 has numerous overlapping symptoms with other upper respiratory conditions, making it hard for diagnosticians to diagnose correctly. Several mathematical models have been presented for its diagnosis and treatment. This article delivers a mathematical framework based on a novel agile fuzzy-like arrangement, namely, the complex fuzzy hypersoft (CFHS) set, which is a formation of the complex fuzzy (CF) set and the hypersoft set (an extension of soft set). First, the elementary theory of CFHS is developed, which considers the amplitude term (A-term) and the phase term (P-term) of the complex numbers simultaneously to tackle uncertainty, ambivalence, and mediocrity of data. In two components, this new fuzzy-like hybrid theory is versatile. First, it provides access to a broad spectrum of membership function values by broadening them to the unit circle on an Argand plane and incorporating an additional term, the P-term, to accommodate the data’s periodic nature. Second, it categorizes the distinct attribute into corresponding sub-valued sets for better understanding. The CFHS set and CFHS-mapping with its inverse mapping (INM) can manage such issues. Our proposed framework is validated by a study establishing a link between COVID-19 symptoms and medicines. For the COVID-19 types, a table is constructed relying on the fuzzy interval of [0,1]. The computation is based on CFHS-mapping, which identifies the disease and selects the optimum medication correctly. Furthermore, a generalized CFHS-mapping is provided, which can help a specialist extract the patient’s health record and predict how long it will take to overcome the infection.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3