Microstructure Evolution and Numerical Modeling of TC4 Titanium Alloy during Ultrasonic Shot Peening Process

Author:

Yi Yuxuan123,Yin Fei123,Zhai Jiajun123,Liu Yanxiong123

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

2. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China

3. Hubei Longzhong Laboratory, Xiangyang 441000, China

Abstract

Ultrasonic shot peening (USP) is a surface treatment technology used in the mechanical properties strengthening of the engineering material and components during manufacturing. TC4 titanium alloy is a commonly used engineering material in the aerospace industry. In this study, a gradient nanostructured surface layer was successfully fabricated on the TC4 titanium alloy via USP technology at room temperature. The microstructure evolution of TC4 titanium alloy during USP was investigated. The surface microhardness was elevated from 330 HV to 438 HV with a penetrating depth of around 900 μm after USP with the duration of 8 min. EBSD characterization results confirmed the presence of high-density grain boundaries within the gradient structure in the region of 0–200 μm, accompanied by proliferation of dislocation density. TEM characterization indicated a substantial amount of nanograin with an average size of 74.58 nm. Furthermore, the USP process was also investigated by the finite element method to evaluate the surface-strengthening effect. The calculated maximum residual stress reached 973 MPa after multi-ball impact. The impact behavior of the shots during the USP process was studied. The effect of the parameters on the USP strengthening intensity was explored based on the validated model. This work provided a clearer understanding of the USP strengthening process of TC4 titanium alloy through an effective method of evaluating the process parameters.

Funder

National Key R&D Program of China

Science and Technology Innovation Talents and Service Project of Hubei Province

Independent Innovation Projects of the Hubei Longzhong Laboratory

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Overseas Expertise Introduction Project for Discipline Innovation

Innovative Research Team Development Program of the Ministry of Education of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3