Abstract
In the present study, effect of ultrasonic impact treatment (UIT) on the microstructural characterization and mechanical properties of 316L stainless steel (hereinafter referred to as 316L) was investigated experimentally. The fatigue fracture mechanism of 316L before and after UIT was revealed. The experimental results indicated that the martensitic grain size induced at the impact edge was about 2.00 Å. The surface modified 316L formed a gradient nanostructure and induced a martensitic phase transformation. The hardness of the surface layer of the modified 316L was twice the hardness of its matrix. The tensile strengths of 316L before and after UIT were 576 MPa and 703 MPa, respectively. The stretching stripes of 316L were more disordered after UIT. The fatigue strengths of 316L before and after UIT were 267 MPa and 327 MPa, respectively. The fatigue cracking of 316L started from the austenite grain boundaries. The fatigue fracture surface was relatively rough. The fatigue crack sources of the modified 316L came from internal inclusions. The inclusions were oxides dominated by SiO2. As the stress range increased, the crack initiation site migrated to the interior and the fatigue fracture surface became flatter.
Funder
National Natural Science Foundation of China
Publisher
Public Library of Science (PLoS)