Effect of ultrasonic surface impact on the microstructural characterization and mechanical properties of 316L austenitic stainless steel

Author:

Zhu Jiangpei,Zhuang Mei-Ling,Qi Yuting,Chen Bin,Cao XiaojianORCID

Abstract

In the present study, effect of ultrasonic impact treatment (UIT) on the microstructural characterization and mechanical properties of 316L stainless steel (hereinafter referred to as 316L) was investigated experimentally. The fatigue fracture mechanism of 316L before and after UIT was revealed. The experimental results indicated that the martensitic grain size induced at the impact edge was about 2.00 Å. The surface modified 316L formed a gradient nanostructure and induced a martensitic phase transformation. The hardness of the surface layer of the modified 316L was twice the hardness of its matrix. The tensile strengths of 316L before and after UIT were 576 MPa and 703 MPa, respectively. The stretching stripes of 316L were more disordered after UIT. The fatigue strengths of 316L before and after UIT were 267 MPa and 327 MPa, respectively. The fatigue cracking of 316L started from the austenite grain boundaries. The fatigue fracture surface was relatively rough. The fatigue crack sources of the modified 316L came from internal inclusions. The inclusions were oxides dominated by SiO2. As the stress range increased, the crack initiation site migrated to the interior and the fatigue fracture surface became flatter.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Reference44 articles.

1. Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of the Concept behind a New Approach;K Lu;Journal of Materials Science & Technology,1999

2. Fretting wear and friction reduction of CP titanium and Ti–6Al–4V alloy by ultrasonic nanocrystalline surface modification;A Amanov;Surface & Coatings Technology,2012

3. Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification;X J Cao;Applied Surface Science,2010

4. Surface grain boundary engineering of Alloy 600 for improved resistance to stress corrosion cracking;A Telang;Materials Science & Engineering A,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3