Author:
Lai Hsin-Yi,Li Yi-Ting,Chan Yen-Hsin
Abstract
This paper presents the work for efficiency enhancement on a hybrid power system with an irreversible Solid Oxide Fuel Cell (SOFC) and Stirling Engine (SE) for various system design using the approach of finite-time thermodynamics. The SOFC-based cogeneration system was integrated with an SE and several heat components. The effects of design configurations using various interface components on system performance were investigated. By analyzing the SE with finite-time thermodynamics and considering multiple irreversible factors of output power given by the SOFC, the efficiency of the calculation can be more practical and accurate. In this study, the working efficiency of the proposed hybrid system was enhanced by 16.37% compared to that of the conventional system at an intermediate temperature of 873 K. The design approach proposed herein is considered an essential package for building highly efficient power systems working in the intermediate temperature range.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献