Abstract
Considering the specific heat characteristics of working fluid and existence of various losses in a porous medium (PM) cycle, this paper applies finite time thermodynamic theory to study its efficient power performance with nonlinear variable specific heat model. Range of the cycle pre-expansion ratio is obtained by solving the equation, and PM cycle is converted to Otto cycle by choosing appropriate pre-expansion ratio. Influences of pre-expansion ratio, specific heat characteristics, temperature ratio, and various losses on cycle performances are investigated. Thermal efficiencies are compared at operating points of the maximum power output and efficient power. The results show that PM cycle has better performance than Otto cycle. Under certain conditions of parameters, thermal efficiencies at the maximum efficient power and maximum power output operating points are 50.45% and 47.05%, respectively, and the former is 7.22% higher than the latter. The engine designed with the maximum efficient power as the criterion can improve thermal efficiency by losing less power output. The results of this paper can guide parameters selection of actual PM heat engine.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献