Impacts of the Increasingly Strict Sulfur Limit on Compliance Option Choices: The Case Study of Chinese SECA

Author:

Fan LixianORCID,Gu BingmeiORCID

Abstract

The International Maritime Organization (IMO) has proposed several environmental regulations on controlling SOx and NOx emissions from ships in coastal areas. Under the framework of IMO, some areas have established strict emission control areas (ECAs) to reduce emissions, which mainly contain Europe and North America. To further strengthen the control and supervision over air pollutants from shipping activities, the Sulfur cap regulation of 0.5% by mass will come into effect on 1 January, 2020 globally, when all the sailing vessels on the high sea should use fuels with sulfur content less than 0.5%. This limit is stricter for the global recognized sulfur emission control areas (SECAs), where it was 0.1% since 1 January 2015. However, Chinese local SECA lags behind the globally recognized SECAs, where the 0.5% Sulfur cap was implemented from 2016 and it has to be strengthened along with the global sulfur cap 2020. These increasingly stringent emission regulations have huge effects on shipping operators. The current study discusses the potential impacts of the stricter sulfur cap on operators’ compliance option choices, where fuel-switching and scrubber system are analyzed under different sulfur limits. Meanwhile, the slow steaming practice is incorporated into the fuel-switching option by considering speed differentiation in different sulfur limit areas. This study develops a cost-minimizing model using NPV (net present value) method. It analyzes the optimal option within vessels’ lifespan considering the tradeoff between the initial investment and future operational cost for newbuilding vessels based on a case study. In addition, emissions of CO2 and SOx are compared under different compliance options in different sulfur cap scenarios. Our results find that the scrubber system is a suitable option to comply with the 0.5% global sulfur limit, and a higher efficiency of sulfur abatement can be attained by the scrubber system option. However, it emits more carbon emissions due to higher energy consumption used by the scrubber system. In addition, the effects of additional vessels deployed in the cycle on the compliance choices are also demonstrated in the analysis.

Funder

National Natural Science Foundation of China

Chinese National Funding of Social Sciences

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3