Abstract
The structure of a microresonator will affect the vibration characteristics and the performance of the system. Inspired by the structural characteristics of the human tympanic membrane, this paper proposed a microresonator with the bionic structure of a tympanic membrane. The structure of a tympanic membrane was simplified to a regular shape with three structural parameters: diameter, height, and thickness. To imitate the tympanic membrane, the contour surface of the bionic structure was modeled based on the formula of transverse vibration mode of a circular thin plate. The geometric model of the bionic structure was established by using the three structural parameters and the contour surface equation. The dynamic properties of the bionic model were studied by the finite element method (FEM). We discuss the modal characteristics of the bionic structure and study the effect of structural parameters and scale on the dynamic properties. The advantages of the bionic structure were investigated by a comparison with circular plate microresonators. The results illustrate that the bionic structure can significantly improve the resonant frequency and have a much larger effective area of vibration displacement.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献