Reactive Transport Model of Gypsum Karstification in Physically and Chemically Heterogeneous Fractured Media

Author:

Águila Jesús F.ORCID,Samper JavierORCID,Buil Belén,Gómez Paloma,Montenegro LuisORCID

Abstract

Gypsum dissolution leads to the development of karstic features within much shorter timescales than in other sedimentary rocks, potentially leading to rapid deterioration of groundwater quality and increasing the risk of catastrophes caused by subsidence. Here, we present a 2-D reactive transport model to evaluate gypsum karstification in physically and chemically heterogeneous systems. The model considers a low-permeability rock matrix composed mainly of gypsum and a discontinuity (fracture), which acts as a preferential water pathway. Several scenarios are analyzed and simulated to investigate the relevance for gypsum karstification of: (1) the dynamic update of flow and transport parameters due to porosity changes; (2) the spatial distribution of minerals in the rock matrix; (3) the time evolution of water inflows through the boundaries of the model; (4) the functions relating permeability, k, to porosity, ϕ. The average porosity of the matrix after 1000 years of simulation increases from 0.045 to 0.29 when flow, transport, and chemical parameters and the water inflows through the boundary are dynamically updated according to the porosity changes. On the contrary, the porosity of the matrix hardly changes when the porosity feedback effect is not considered, while its average increases to 0.13 if the water inflow occurs through the discontinuity. Moreover, the dissolution of small amounts of highly soluble sulfate minerals plays a major role in the development of additional fractures. The increase in hydraulic conductivity is largest for the power law with an exponent of n = 5, as well as the Kozeny-Carman and the modified Fair-atch k-ϕ relationships. The gypsum dissolution front propagates into the matrix faster when the power law with n = 2 and 3 and the Verma–Pruess k-ϕ relationships are used.

Funder

Spanish Ministry of Economy and Competitiveness

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3