Author:
Águila Jesús F.,McDonnell Mark C.,Flynn Raymond,Butler Adrian P.,Hamill Gerard A.,Etsias Georgios,Benner Eric M.,Donohue Shane
Abstract
AbstractHydraulic conductivity is one of the most challenging hydrogeological properties to appropriately measure due to its dependence on the measurement scale and the influence of heterogeneity. This paper presents a comparison of saturated hydraulic conductivities (K) determined for a quasi-homogeneous coastal sand aquifer, estimated using eight different methodologies, encompassing empirical, hydraulic and numerical modeling methods. The geometric means of K, determined using 22 methods, spanning measurement scales varying between 0.01 and 100 m, ranged between 3.6 and 58.3 m/d. K estimates from Cone Penetration Test (CPT) data proved wider than those obtained using the other methods, while various empirical equations, commonly used to estimate K from grain-size analysis and Tide-Aquifer interaction techniques revealed variations of up to one order of magnitude. Single-well tracer dilution tests provided an alternative for making preliminary estimates of K when hydraulic gradients were known. Estimates from the slug tests proved between 1.2 and 1.6 times larger than those determined from pumping tests which, with one of the smallest ranges of variation, provided a representative average K of the aquifer as revealed by numerical modeling. By contrast, variations in K with depth could be detected at small scales (~ 0.1 m). Hydraulic Profiling Tool (HPT) system data indicated that K decreases with depth, which was supported by the numerical model results. No scale effect on K was apparent when considering the ensemble of results, suggesting that hydraulic conductivity estimates do not depend on the scale of measurement in the absence of significant aquifer heterogeneities.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献