Isolation and Optimization of Aflatoxin B1 Degradation by Uniform Design and Complete Genome Sequencing of Novel Deep-Sea Kocuria rosea Strain 13

Author:

Wang Jingying12ORCID,Chen Qiqi12ORCID,Yan Peisheng12,Dong Chunming345ORCID,Shao Zongze3456ORCID

Affiliation:

1. School of Environment, Harbin Institute of Technology, Harbin 150090, China

2. School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China

3. Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, China

4. State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China

5. Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 350002, China

6. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China

Abstract

Aflatoxin B1 is a natural carcinogenic mycotoxin. The biological detoxification of aflatoxin could result in less environmental pollution, more moderate conditions, and less impact on food and feed, and be more convenient than physical and chemical methods. In this study, strain 13 with aflatoxin B1 degradation activity (67.47 ± 1.44%) was isolated and identified as Kocuria rosea. A uniform design was applied to optimize the degradation activity using a software Data Processing System, and a quadratic polynomial stepwise regression model was selected to investigate the relationships between the degradation rate and five independent variables. Furthermore, the optimal degradation conditions (culture temperature of 30 °C, culture time of 4.2 days, seawater ratio of 100%, pH of 7.11, and inoculation dosage of 0.09%) were verified with a degradation rate of 88 ± 0.03%, which was well matched with the predicted value (92.97%) of the model. Complete genome sequencing of Kocuria rosea, conducted with a combination of Illumina and single-molecule real-time sequencing, was used to analyze the genomic features and functions of the strain, which were predicted by the annotation based on seven databases, and may provide insights into the potential of Kocuria rosea, as well as providing a reference for degradation gene and protein mining. These results indicate that Kocuria rosea strain 13 has the ability to degrade aflatoxin B1 efficiently, and it also has the potential to provide aflatoxin-degrading enzymes.

Funder

China Ocean Mineral Resource R&D Association

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced U(VI) biomineralization by Kocuria rosea via phytate hydrolysis;Journal of Radioanalytical and Nuclear Chemistry;2024-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3