Efficient Inhibition of Aspergillus flavus to Reduce Aflatoxin Contamination on Peanuts over Ag-Loaded Titanium Dioxide

Author:

Yang Dandan1,Wei Hailian1,Yang Xianglong1,Cheng Ling1,Zhang Qi12,Li Peiwu12,Mao Jin12ORCID

Affiliation:

1. National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Quality Inspection & Test Center for Oilseed Products, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China

2. Hubei Hongshan Laboratory, Wuhan 430062, China

Abstract

Peanuts are susceptible to aflatoxins produced by Aspergillus flavus. Exploring green, efficient, and economical ways to inhibit Aspergillus flavus is conducive to controlling aflatoxin contamination from the source. In this study, Ag-loaded titanium dioxide composites showed more than 90% inhibition rate against Aspergillus flavus under visible light irradiation for 15 min. More importantly, this method could also reduce the contaminated level of Aspergillus flavus to prevent aflatoxins production in peanuts, and the concentrations of aflatoxin B1, B2, and G2 were decreased by 96.02 ± 0.19%, 92.50 ± 0.45%, and 89.81 ± 0.52%, respectively. It was found that there are no obvious effects on peanut quality by evaluating the changes in acid value, peroxide value, and the content of fat, protein, polyphenols, and resveratrol after inhibition treatment. The inhibition mechanism was that these reactive species (•O2−, •OH−, h+, and e−) generated from photoreaction destroyed cell structures, then led to the reduced viability of Aspergillus flavus spores. This study provides useful information for constructing a green and efficient inhibition method for Aspergillus flavus on peanuts to control aflatoxin contamination, which is potentially applied in the field of food and agri-food preservation.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Science

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3