Abstract
Many human cardiovascular and neurological disorders (such as ischemia, epileptic seizures, traumatic brain injury, neuropathic pain, etc.) are associated with the abnormal functional activity of voltage-gated sodium channels (VGSCs/NaVs). Many natural toxins, including the sea anemone toxins (called neurotoxins), are an indispensable and promising tool in pharmacological researches. They have widely been carried out over the past three decades, in particular, in establishing different NaV subtypes functional properties and a specific role in various pathologies. Therefore, a large number of publications are currently dedicated to the search and study of the structure-functional relationships of new sea anemone natural neurotoxins–potential pharmacologically active compounds that specifically interact with various subtypes of voltage gated sodium channels as drug discovery targets. This review presents and summarizes some updated data on the structure-functional relationships of known sea anemone neurotoxins belonging to four structural types. The review also emphasizes the study of type 2 neurotoxins, produced by the tropical sea anemone Heteractis crispa, five structurally homologous and one unique double-stranded peptide that, due to the absence of a functionally significant Arg14 residue, loses toxicity but retains the ability to modulate several VGSCs subtypes.
Subject
Health, Toxicology and Mutagenesis,Toxicology
Reference194 articles.
1. Peptide therapeutics from venom: Current status and potential;Pennington;Bioorg. Med. Chem.,2018
2. Peptide toxins in sea anemones: Structural and functional aspects;Honma;Mar. Biotechnol.,2006
3. Novel peptide toxins recently isolated from sea anemones;Shiomi;Toxicon,2009
4. Kastin, A.J. (2013). Handbook of Biologically Active Peptides, Elsevier. [2nd ed.].
5. Ashwood, L.M., Norton, R.S., Undheim, E.A.B., Hurwood, D.A., and Prentis, P.J. (2020). Characterizing functional venom profiles of Anthozoans and Medusozoans within their ecological context. Mar. Drugs, 18.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献