Molecular Insights into the Low Complexity Secreted Venom of Calliactis polypus

Author:

Smith Hayden L1ORCID,Broszczak Daniel A2ORCID,Bryan Scott E3ORCID,Norton Raymond S45ORCID,Prentis Peter J16ORCID

Affiliation:

1. School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology , Brisbane 4000 , Australia

2. School of Biomedical Sciences, Faculty of Health, Queensland University of Technology , Brisbane 4000 , Australia

3. School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology , Brisbane 4000 , Australia

4. Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052 , Australia

5. ARC Centre for Fragment-Based Design, Monash University , Parkville, VIC 3052 , Australia

6. Centre for Agriculture and the Bioeconomy, Queensland University of Technology , Brisbane 4000 , Australia

Abstract

Abstract Sea anemones are venomous animals that rely on their venom for prey capture, defense against predators, and intraspecific competition. Currently, comprehensive molecular and evolutionary analyses of the toxin repertoire for sea anemones are limited by a lack of proteomic data for most species. In this study, proteo-transcriptomic analysis was used to expand our knowledge of the proteinaceous components of sea anemone venom by determining the secreted venom proteome of Calliactis polypus. Electromechanical stimulation was used to obtain the secreted venom of C. polypus. We identified a low complexity proteome that was dominated by toxins with similarity to known neurotoxins, as well as six novel toxin candidates. The novel putative toxin candidates were found to be taxonomically restricted to species from the superfamily Metridioidea. Furthermore, the secreted venom of C. polypus had only three putative toxins in common with the venom of acontia from the same species and little similarity with the secreted venom of closely related species. Overall, this demonstrates that regionalized and lineage-specific variability in toxin abundance is common among sea anemone species. Moreover, the limited complexity of the toxin repertoire found in C. polypus supports the idea that peptide neurotoxins make up the dominant toxin arsenal found in the venom of sea anemones.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3