A Comprehensive Structural Analysis of Clostridium botulinum Neurotoxin A Cell-Binding Domain from Different Subtypes

Author:

Gregory Kyle S.ORCID,Acharya K. RaviORCID

Abstract

Botulinum neurotoxins (BoNTs) cause flaccid neuromuscular paralysis by cleaving one of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex proteins. BoNTs display high affinity and specificity for neuromuscular junctions, making them one of the most potent neurotoxins known to date. There are seven serologically distinct BoNTs (serotypes BoNT/A to BoNT/G) which can be further divided into subtypes (e.g., BoNT/A1, BoNT/A2…) based on small changes in their amino acid sequence. Of these, BoNT/A1 and BoNT/B1 have been utilised to treat various diseases associated with spasticity and hypersecretion. There are potentially many more BoNT variants with differing toxicological profiles that may display other therapeutic benefits. This review is focused on the structural analysis of the cell-binding domain from BoNT/A1 to BoNT/A6 subtypes (HC/A1 to HC/A6), including features such as a ganglioside binding site (GBS), a dynamic loop, a synaptic vesicle glycoprotein 2 (SV2) binding site, a possible Lys–Cys/Cys–Cys bridge, and a hinge motion between the HCN and HCC subdomains. Characterising structural features across subtypes provides a better understanding of how the cell-binding domain functions and may aid the development of novel therapeutics.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3