Degradation of 4-Tert-Butylphenol in Water Using Mono-Doped (M1: Mo, W) and Co-Doped (M2-M1: Cu, Co, Zn) Titania Catalysts

Author:

Mergenbayeva SauleORCID,Kumarov AlisherORCID,Atabaev Timur Sh.ORCID,Hapeshi EvroulaORCID,Vakros John,Mantzavinos DionissiosORCID,Poulopoulos Stavros G.ORCID

Abstract

Mono-doped (Mo-TiO2 and W-TiO2) and co-doped TiO2 (Co-Mo-TiO2, Co-W-TiO2, Cu-Mo-TiO2, Cu-W-TiO2, Zn-Mo-TiO2, and Zn-W-TiO2) catalysts were synthesized by simple impregnation methods and tested for the photocatalytic degradation of 4-tert-butylphenol in water under UV (365 nm) light irradiation. The catalysts were characterized with various analytical methods. X-ray diffraction (XRD), Raman, Diffuse reflectance (DR) spectroscopies, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Energy dispersive spectroscopy (EDS) were applied to investigate the structure, optical properties, morphology, and elemental composition of the prepared catalysts. The XRD patterns revealed the presence of peaks corresponding to the WO3 in W-TiO2, Co-W-TiO2, Cu-W-TiO2, and Zn-W-TiO2. The co-doping of Cu and Mo to the TiO2 lattice was evidenced by the shift of XRD planes towards higher 2θ values, confirming the lattice distortion. Elemental mapping images confirmed the successful impregnation and uniform distribution of metal particles on the TiO2 surface. Compared to undoped TiO2, Mo-TiO2 and W-TiO2 exhibited a lower energy gap. Further incorporation of Mo-TiO2 with Co or Cu introduced slight changes in energy gap and light absorption characteristics, particularly visible light absorption. In addition, photoluminescence (PL) showed that Cu-Mo-TiO2 has a weaker PL intensity than undoped TiO2. Thus, Cu-Mo-TiO2 showed better catalytic activity than pure TiO2, achieving complete degradation of 4-tert-butylphenol under UV light irradiation after 60 min. The application of Cu-Mo-TiO2 under solar light conditions was also tested, and 70% of 4-tert-butylphenol degradation was achieved within 150 min.

Funder

Nazarbayev University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3