Author:
Wang Haoxiang,Gao Shang,Kang Renke,Guo Xiaoguang,Li Honggang
Abstract
Silicon carbide (SiC) is a promising semiconductor material for making high-performance power electronics with higher withstand voltage and lower loss. The development of cost-effective machining technology for fabricating SiC wafers requires a complete understanding of the deformation and removal mechanism. In this study, molecular dynamics (MD) simulations were carried out to investigate the origins of the differences in elastic–plastic deformation characteristics of the SiC polytypes, including 3C-SiC, 4H-SiC and 6H-SiC, during nanoindentation. The atomic structures, pair correlation function and dislocation distribution during nanoindentation were extracted and analyzed. The main factors that cause elastic–plastic deformation have been revealed. The simulation results show that the deformation mechanisms of SiC polytypes are all dominated by amorphous phase transformation and dislocation behaviors. Most of the amorphous atoms recovered after completed unload. Dislocation analysis shows that the dislocations of 3C-SiC are mainly perfect dislocations during loading, while the perfect dislocations in 4H-SiC and 6H-SiC are relatively few. In addition, 4H-SiC also formed two types of stacking faults.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
General Materials Science,General Chemical Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献