Deep PUF: A Highly Reliable DRAM PUF-Based Authentication for IoT Networks Using Deep Convolutional Neural Networks

Author:

Najafi Fatemeh,Kaveh Masoud,Martín DiegoORCID,Reza Mosavi MohammadORCID

Abstract

Traditional authentication techniques, such as cryptographic solutions, are vulnerable to various attacks occurring on session keys and data. Physical unclonable functions (PUFs) such as dynamic random access memory (DRAM)-based PUFs are introduced as promising security blocks to enable cryptography and authentication services. However, PUFs are often sensitive to internal and external noises, which cause reliability issues. The requirement of additional robustness and reliability leads to the involvement of error-reduction methods such as error correction codes (ECCs) and pre-selection schemes that cause considerable extra overheads. In this paper, we propose deep PUF: a deep convolutional neural network (CNN)-based scheme using the latency-based DRAM PUFs without the need for any additional error correction technique. The proposed framework provides a higher number of challenge-response pairs (CRPs) by eliminating the pre-selection and filtering mechanisms. The entire complexity of device identification is moved to the server side that enables the authentication of resource-constrained nodes. The experimental results from a 1Gb DDR3 show that the responses under varying conditions can be classified with at least a 94.9% accuracy rate by using CNN. After applying the proposed authentication steps to the classification results, we show that the probability of identification error can be drastically reduced, which leads to a highly reliable authentication.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secure PUF-Based Authentication Systems;Sensors;2024-08-15

2. Fortified-Edge 4.0: A ML-Based Error Correction Framework for Secure Authentication in Collaborative Edge Computing;Proceedings of the Great Lakes Symposium on VLSI 2024;2024-06-12

3. PhenoAuth: A Novel PUF-Phenotype-Based Authentication Protocol for IoT Devices;2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST);2024-05-06

4. DRAM-Based PUF Utilizing the Variation of Adjacent Cells;IEEE Transactions on Information Forensics and Security;2024

5. T2S-MAKEP and T2T-MAKEP: A PUF-based Mutual Authentication and Key Exchange Protocol for IoT devices;Internet of Things;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3