A Lightweight Authentication Scheme for V2G Communications: A PUF-Based Approach Ensuring Cyber/Physical Security and Identity/Location Privacy

Author:

Kaveh Masoud,Martín DiegoORCID,Mosavi Mohammad RezaORCID

Abstract

Vehicle-to-grid (V2G) technology has become a promising concept for the near future smart grid eco-system. V2G improves smart grid resiliency by enabling two-way communication and electricity flows while reducing the greenhouse gases emission. V2G practicality and stability is strongly based on the exchanged data between electrical vehicles (EVs) and the grid server (GS). However, using communication protocols to exchange vital information leads grid to being vulnerable against various types of attack. To prevent the well-known attacks in V2G network, this paper proposes a privacy-aware authentication scheme that ensures data integrity, confidentiality, users’ identity and location privacy, mutual authentication, and physical security based on physical unclonable function (PUF). Furthermore, the performance analysis shows that the proposed scheme outperforms the state-of-the-art, since EVs only use lightweight cryptographic primitives for every protocol execution.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3