Self-Supervised Sidewalk Perception Using Fast Video Semantic Segmentation for Robotic Wheelchairs in Smart Mobility

Author:

Pradeep VishnuORCID,Khemmar RedouaneORCID,Lecrosnier LouisORCID,Duchemin YannORCID,Rossi RomainORCID,Decoux BenoitORCID

Abstract

The real-time segmentation of sidewalk environments is critical to achieving autonomous navigation for robotic wheelchairs in urban territories. A robust and real-time video semantic segmentation offers an apt solution for advanced visual perception in such complex domains. The key to this proposition is to have a method with lightweight flow estimations and reliable feature extractions. We address this by selecting an approach based on recent trends in video segmentation. Although these approaches demonstrate efficient and cost-effective segmentation performance in cross-domain implementations, they require additional procedures to put their striking characteristics into practical use. We use our method for developing a visual perception technique to perform in urban sidewalk environments for the robotic wheelchair. We generate a collection of synthetic scenes in a blending target distribution to train and validate our approach. Experimental results show that our method improves prediction accuracy on our benchmark with tolerable loss of speed and without additional overhead. Overall, our technique serves as a reference to transfer and develop perception algorithms for any cross-domain visual perception applications with less downtime.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference56 articles.

1. Multimodal deep learning for robust RGB-D object recognition

2. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

3. Deep Residual Learning for Image Recognition;He;arXiv,2015

4. ImageNet Large Scale Visual Recognition Challenge

5. Very Deep Convolutional Networks for Large-Scale Image Recognition;Simonyan;arXiv,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3