DELTA: Integrating Multimodal Sensing with Micromobility for Enhanced Sidewalk and Pedestrian Route Understanding

Author:

Akhavi Zadegan Alireza1ORCID,Vivet Damien2ORCID,Hadachi Amnir1ORCID

Affiliation:

1. ITS Lab, Institute of Computer Science, University of Tartu, 51009 Tartu, Estonia

2. ISAE-SUPAERO, Universite de Toulouse, 31400 Toulouse, France

Abstract

Urban environments are undergoing significant transformations, with pedestrian areas emerging as complex hubs of diverse mobility modes. This shift demands a more nuanced approach to urban planning and navigation technologies, highlighting the limitations of traditional, road-centric datasets in capturing the detailed dynamics of pedestrian spaces. In response, we introduce the DELTA dataset, designed to improve the analysis and mapping of pedestrian zones, thereby filling the critical need for sidewalk-centric multimodal datasets. The DELTA dataset was collected in a single urban setting using a custom-designed modular multi-sensing e-scooter platform encompassing high-resolution and synchronized audio, visual, LiDAR, and GNSS/IMU data. This assembly provides a detailed, contextually varied view of urban pedestrian environments. We developed three distinct pedestrian route segmentation models for various sensors—the 4K camera, stereocamera, and LiDAR—each optimized to capitalize on the unique strengths and characteristics of the respective sensor. These models have demonstrated strong performance, with Mean Intersection over Union (IoU) values of 0.84 for the reflectivity channel, 0.96 for the 4K camera, and 0.92 for the stereocamera, underscoring their effectiveness in ensuring precise pedestrian route identification across different resolutions and sensor types. Further, we explored audio event-based classification to connect unique soundscapes with specific geolocations, enriching the spatial understanding of urban environments by associating distinctive auditory signatures with their precise geographical origins. We also discuss potential use cases for the DELTA dataset and the limitations and future possibilities of our research, aiming to expand our understanding of pedestrian environments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3