Autologous Platelet Rich Plasma (PRGF) Preserves Genomic Stability of Gingival Fibroblasts and Alveolar Osteoblasts after Long-Term Cell Culture

Author:

Anitua EduardoORCID,Fuente María de la,Troya María,Zalduendo Mar,Alkhraisat Mohammad Hamdan

Abstract

Plasma rich in growth factors (PRGF) has several applications in dentistry that may require repeated applications of PRGF. Furthermore, it has been used for ex vivo expansion of human origin cells for their clinical application. One of the most relevant issues in these applications is to guarantee the genetic stability of cells. In this study, the chromosomal stability of gingival fibroblasts and alveolar osteoblasts after long-term culture was evaluated. Cells were expanded with PRGF or foetal bovine serum (FBS) as a culture medium supplement until passage 7 or 8 for gingival fibroblast or alveolar osteoblasts, respectively. A comparative genomic hybridization (CGH) array was used for the genetic stability study. This analysis was performed at passage 3 and after long-term culture with the corresponding culture medium supplements. The cell proliferative rate was superior after PRGF culture. Array CGH analysis of cells maintained with all the three supplements did not reveal the existence of alterations in copy number or genetic instability. The autologous PRGF technology preserves the genomic stability of cells and emerges as a safe substitute for FBS as a culture medium supplement for the clinical translation of cell therapy.

Publisher

MDPI AG

Subject

General Dentistry

Reference61 articles.

1. Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects

2. Regenerative Endodontics and Minimally Invasive Dentistry: Intertwining Paths Crossing Over Into Clinical Translation

3. Minimally Invasive and Regenerative Therapeutics

4. Mechanism Action of Platelets and Crucial Blood Coagulation Pathways in Hemostasis;Periayah;Int. J. Hematol. Oncol. Stem Cell Res.,2017

5. Plasma rich in growth factors: Preliminary results of use in the preparation of future sites for implants;Anitua;Int. J. Oral Maxillofac. Implant.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3