Post-Orthodontic Relapse Prevention through Administration of a Novel Synthetic Carbonated Hydroxyapatite–Chitosan Hydrogel Derived from Blood Cockle Shell (Anadara granosa L.)

Author:

Hadi Aanisah Fauziyyah Nurul1,Aghniya Sabrina Noor1,Haidar Gayuh Abi1,Sihombing Windy Sepry Marcelina1,Sutedjo Angelina1,Alhasyimi Ananto Ali2ORCID

Affiliation:

1. Undergraduate Program, Faculty of Dentistry, Gadjah Mada University, Sleman, Yogyakarta 55281, Indonesia

2. Department of Orthodontic, Faculty of Dentistry, Gadjah Mada University, Sleman, Yogyakarta 55281, Indonesia

Abstract

Relapse during passive orthodontic treatment is a major issue, with 70–90% frequency. This study examines whether blood cockle shells may be used to extract carbonated hydroxyapatite (CHA)-chitosan (CS). This study also aims to analyze the effect of CHA-CS on orthodontic relapse in rats. This study utilized 18 male Wistar rats which were randomly divided into two groups: CHA-CS and the control group (CG). The rats were subjected to a 35 cN orthodontic force for a duration of 7 days, after which the rats were conditioned to be passive. During this phase, the CHA-CS group received daily administration of CHA-CS hydrogel derived from the blood cockle shell. Subsequently, the appliances were detached to facilitate relapse. The distance between the mesial tips was measured using a digital caliper at three consecutive time points: 1, 5, and 7 days after debonding. The number of osteoblasts, osteoclasts, and fibroblasts was examined using hematoxylin–eosin staining. The data were subjected to statistical analysis using a t-test. The relapse distance of the CHA-CS group was lower than that of the control groups on day 7. Histological examinations using hematoxylin–eosin (HE) staining showed a significant increase in osteoblasts, a decrease in osteoclasts, and an increase in fibroblasts during orthodontic relapse movement (p < 0.05). This study found that blood cockle shell-derived CHA-CS may reduce orthodontic relapse by increasing osteoblasts and fibroblasts and by reducing the osteoclast number in rats.

Funder

Student Creativity Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3