Design and Implementation of High-Availability Architecture for IoT-Cloud Services

Author:

Yang HyunsikORCID,Kim Younghan

Abstract

For many vertical Internet of Things (IoT) applications, the high availability is very important. In traditional cloud systems, services are usually implemented with the same level of availability in which the fault detection and fault recovery mechanisms are not aware of service characteristics. In IoT-cloud, various services are provided with different service characteristics and availability requirements. Therefore, the existing cloud system is inefficient to optimize the availability method and resources to meet service requirements. To address this issue, this paper proposes a high availability architecture that is capable of dynamically optimizing the availability method based on service characteristics. The proposed architecture was verified through an implementation system based on OpenStack, and it was demonstrated that the system was able to achieve the target availability while optimizing resources, in contrast with existing architectures that use predefined availability methods.

Funder

Institute for Information and communications Technology Promotion

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dependability of Network Services in the Context of NFV: A Taxonomy and State of the Art Classification;Journal of Network and Systems Management;2024-03-26

2. Managing Failures and Service Quality in the Context of NFV;2024 International Conference on Computing, Networking and Communications (ICNC);2024-02-19

3. Review of EEG-Based Biometrics in 5G-IoT: Current Trends and Future Prospects;Applied Sciences;2024-01-08

4. Cyberattacks and Security of Cloud Computing: A Complete Guideline;Symmetry;2023-10-26

5. Enhancing the Availability of Web Services in the IoT-to-Edge-to-Cloud Compute Continuum: A WordPress Case Study;2023 26th Euromicro Conference on Digital System Design (DSD);2023-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3