Abstract
Asymmetric key cryptosystem is a vital element in securing our communication in cyberspace. It encrypts our transmitting data and authenticates the originality and integrity of the data. The Rivest–Shamir–Adleman (RSA) cryptosystem is highly regarded as one of the most deployed public-key cryptosystem today. Previous attacks on the cryptosystem focus on the effort to weaken the hardness of integer factorization problem, embedded in the RSA modulus, N = p q . The adversary used several assumptions to enable the attacks. For examples, p and q which satisfy Pollard’s weak primes structures and partial knowledge of least significant bits (LSBs) of p and q can cause N to be factored in polynomial time, thus breaking the security of RSA. In this paper, we heavily utilized both assumptions. First, we assume that p and q satisfy specific structures where p = a m + r p and q = b m + r q for a , b are positive integers and m is a positive even number. Second, we assume that the bits of r p and r q are the known LSBs of p and q respectively. In our analysis, we have successfully factored N in polynomial time using both assumptions. We also counted the number of primes that are affected by our attack. Based on the result, it may poses a great danger to the users of RSA if no countermeasure being developed to resist our attack.
Funder
Ministry of Education of Malaysia
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference18 articles.
1. A method for obtaining digital signatures and public-key cryptosystems
2. Factoring integers with the number field sieve;Buhler,1993
3. Theorems on factorization and primality testing
4. An attack on RSA given a small fraction of the private key bits;Boneh,1998
5. Reconstructing RSA private keys from random key bits;Heninger,2009
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献