Small Private Exponent Attacks on RSA Using Continued Fractions and Multicore Systems

Author:

Bahig Hatem M.ORCID,Nassr Dieaa I.ORCID,Mahdi Mohammed A.ORCID,Bahig Hazem M.ORCID

Abstract

The RSA (Rivest–Shamir–Adleman) asymmetric-key cryptosystem is widely used for encryptions and digital signatures. Let (n,e) be the RSA public key and d be the corresponding private key (or private exponent). One of the attacks on RSA is to find the private key d using continued fractions when d is small. In this paper, we present a new technique to improve a small private exponent attack on RSA using continued fractions and multicore systems. The idea of the proposed technique is to find an interval that contains ϕ(n), and then propose a method to generate different points in the interval that can be used by continued fraction and multicore systems to recover the private key, where ϕ is Euler’s totient function. The practical results of three small private exponent attacks on RSA show that we extended the previous bound of the private key that is discovered by continued fractions. When n is 1024 bits, we used 20 cores to extend the bound of d by 0.016 for de Weger, Maitra-Sarkar, and Nassr et al. attacks in average times 7.67 h, 2.7 h, and 44 min, respectively.

Funder

Scientific Research Deanship at University of Ha’il, Saudi Arabia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Continued Fractions Applied to the One Line Factoring Algorithm for Breaking RSA;Journal of Cybersecurity and Privacy;2024-01-10

2. Quantum-Inspired Computing: Shor's Algorithm and Euler's Totient Function;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

3. Acceleration of Wheel Factoring Techniques;Mathematics;2023-03-01

4. A Secure and Lightweight Multi-Party Private Intersection-Sum Scheme over a Symmetric Cryptosystem;Symmetry;2023-01-23

5. Efficient Sequential and Parallel Prime Sieve Algorithms;Symmetry;2022-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3