Distributed Systematic Grid-Connected Inverter Using IGBT Junction Temperature Predictive Control Method: An Optimization Approach

Author:

Wang Zhengping,Li Guoyi,Tseng Ming-LangORCID,Wong Wai-PengORCID,Liu Boying

Abstract

Distributed systematic grid-connected inverter practice needs to improve insulated gate bipolar transistor (IGBT) stability to ensure the safe operation. This study is to ensure the safety and reliability operation of the IGBT module in symmetry to meet the reliable and stable distributed systematic grid-connected inverter practice and the junction temperature is a parameter to assess its operating state. It is difficult to accurately acquire the IGBT junction temperature to be solved by a single method of combining the test and the modeling. The saturation voltage drop or collector current and module junction temperature data under different power cycles are measured by the power cycle test and the single pulse test. The improved chicken swarm optimization increases the chickens diversity and self-learning ability. The prediction model of the improved chicken swarm optimization-support vector machine is proposed to forecast the module junction temperature. The result showed to compare with the particle swarm optimization-support vector machine model and chicken swarm optimization-support vector machine model and showed the coincidence degree between the proposed model prediction value and the true value is higher. The mean absolute error ratio indicates the proposed model has a smaller error and a better prediction performance. The proposed model has a positive impact on improving the distributed systematic grid-connected inverter industrial development and promotes the new energy usage.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3