Detection of Micro-Defects on Irregular Reflective Surfaces Based on Improved Faster R-CNN

Author:

Zhou Zhuangzhuang,Lu Qinghua,Wang Zhifeng,Huang Haojie

Abstract

The detection of defects on irregular surfaces with specular reflection characteristics is an important part of the production process of sanitary equipment. Currently, defect detection algorithms for most irregular surfaces rely on the handcrafted extraction of shallow features, and the ability to recognize these defects is limited. To improve the detection accuracy of micro-defects on irregular surfaces in an industrial environment, we propose an improved Faster R-CNN model. Considering the variety of defect shapes and sizes, we selected the K-Means algorithm to generate the aspect ratio of the anchor box according to the size of the ground truth, and the feature matrices are fused with different receptive fields to improve the detection performance of the model. The experimental results show that the recognition accuracy of the improved model is 94.6% on a collected ceramic dataset. Compared with SVM (Support Vector Machine) and other deep learning-based models, the proposed model has better detection performance and robustness to illumination, which proves the practicability and effectiveness of the proposed method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3