Research on fabric surface defect detection algorithm based on improved Yolo_v4

Author:

Li YuanyuanORCID,Song Liyuan,Cai Yin,Fang Zhijun,Tang Ming

Abstract

AbstractIn industry, the task of defect classification and defect localization is an important part of defect detection system. However, existing studies only focus on one task and it is difficult to ensure the accuracy of both tasks. This paper proposes a defect detection system based on improved Yolo_v4, which greatly improves the detection ability of minor defects. For K_Means algorithm clustering prianchors question with strong subjectivity, the paper proposes the Density Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to determine the number of Anchors. To solve the problem of low detection rate of small targets caused by insufficient reuse rate of low-level features in CSPDarknet53 feature extraction network, this paper proposes an ECA-DenseNet-BC-121 feature extraction network to improve it. And the Dual Channel Feature Enhancement (DCFE) module is proposed to improve the local information loss and gradient propagation obstruction caused by quad chain convolution in PANet networks to improve the robustness of the model. The experimental results on the fabric surface defect detection datasets show that the mAP of the improved Yolo_v4 is 98.97%, which is 7.67% higher than SSD, 3.75% higher than Faster_RCNN, 10.82% higher than Yolo_v4 tiny, and 5.35% higher than Yolo_v4, and the detection speed reaches 39.4 fps. It can meet the real-time monitoring needs of industrial sites.

Funder

The National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3