An Exploration of Loess Landform Development Based on Population Ecology Method

Author:

Yang Ling,Yang Xin,Na JiamingORCID

Abstract

The study of gully characteristics is one of the most effective ways to explore the loess landform development in the Loess Plateau of China. However, current studies mostly focus on gullies’ overall characteristics and ignore the different composition of the whole gully system. Therefore, a new perspective is provided in this paper for exploring loess landform development from the population characteristics of the gully system. Firstly, different types of gullies were extracted based on DEM and high-resolution images in three sample watersheds, including hillslope ephemeral gully, bank gully and different-level valley gully. Secondly, population characteristics from the amount, length, age structure and convergent relationship were calculated and analyzed by referring to the biological population in ecology. Finally, the development stages of loess landform in three watersheds were explored based on their population characteristics. The results showed that: (1) The population characteristics, including number density, length density, age structure and convergence, were obviously different in three sample watersheds. (2) The development differences of three watersheds were obtained by synthesizing all population characteristics: Linjiajian was the most developed and oldest watershed, followed by Yangjiaju and then Wangjiagou. (3) The comparison based on the existing soil erosion intensity map and predisposing factors proved that the findings of this paper were more reasonable than that of the traditional hypsometric integral. This research provides a new quantitative-based approach to explore the development degree of loess landform from the gully population, and is a beneficial attempt to combine geomorphology and ecology, further supplementing and improving the study of loess landform development.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3