Author:
Pilpola Sannamari,Arabzadeh Vahid,Mikkola Jani,Lund Peter
Abstract
The Paris Climate Accord calls for urgent CO2 reductions. Here we investigate low and zero carbon pathways based on clean electricity and sector coupling. Effects from different spatialities are considered through city and national cases (Helsinki and Finland). The methodology employs techno-economic energy system optimization, including resilience aspects. In the Finnish case, wind, nuclear, and biomass coupled to power-to-heat and other flexibility measures could provide a cost-effective carbon-neutral pathway (annual costs −18%), but nuclear and wind are, to some extent, exclusionary. A (near) carbon-neutral energy system seems possible even without nuclear (−94% CO2). Zero-carbon energy production benefits from a stronger link to the broader electricity market albeit flexibility measures. On the city level, wind would not easily replace local combined heat and power (CHP), but may increase electricity export. In the Helsinki case, a business-as-usual approach could halve emissions and annual costs, while in a comprehensive zero-emission approach, the operating costs (OPEX) could decrease by 87%. Generally, electrification of heat production could be effective to reduce CO2. Low or zero carbon solutions have a positive impact on resilience, but in the heating sector this is more problematic, e.g., power outage and adequacy of supply during peak demand will require more attention when planning future carbon-free energy systems.
Funder
Nordic Energy Research
Academy of Finland
Research Council at the Academy of Finland
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference80 articles.
1. Global warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change
https://www.ipcc.ch/sr15/
2. World Energy Outlook 2017,2017
3. On integrating large shares of variable renewables into the electricity system
4. Wind integration: experience, issues, and challenges
5. Technical impacts of high penetration levels of wind power on power system stability
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献