Tribo-oxide Competition and Oxide Layer Formation of Ti3SiC2/CaF2 Self-Lubricating Composites during the Friction Process in a Wide Temperature Range

Author:

Zhang Rui,Feng Wei,Liu Fuyan

Abstract

Ti3SiC2/CaF2 composites were prepared by the spark plasma sintering (SPS) process. Both the microstructure of Ti3SiC2/CaF2 and the influence of test temperature on the tribological behavior of the Ti3SiC2/CaF2composites were investigated. The synergistic effect of friction and oxidation was evaluated by analyzing the worn surface morphology. The results showed that Ti3SiC2/CaF2 were still brittle materials after adding CaF2, which was in agreement with Ti3SiC2. The hardness, relative density, flexural strength and compressive strength of the Ti3SiC2/CaF2 composites were slightly lower than those of Ti3SiC2, and the addition of CaF2 decreased the decomposition temperature of Ti3SiC2 from 1350 to 1300 °C. Simultaneously, as the temperature of the test increased, the friction coefficient of Ti3SiC2/CaF2 showed a downward trend (from 0.81 to 0.34), and its the wear rate was insensitive.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3