Effect of the Uniaxial Compression on the GaAs Nanowire Solar Cell

Author:

Alekseev Prokhor A.,Sharov Vladislav A.ORCID,Borodin Bogdan R.,Dunaevskiy Mikhail S.,Reznik Rodion R.,Cirlin George E.

Abstract

Research regarding ways to increase solar cell efficiency is in high demand. Mechanical deformation of a nanowire (NW) solar cell can improve its efficiency. Here, the effect of uniaxial compression on GaAs nanowire solar cells was studied via conductive atomic force microscopy (C-AFM) supported by numerical simulation. C-AFM I–V curves were measured for wurtzite p-GaAs NW grown on p-Si substrate. Numerical simulations were performed considering piezoresistance and piezoelectric effects. Solar cell efficiency reduction of 50% under a −0.5% strain was observed. The analysis demonstrated the presence of an additional fixed electrical charge at the NW/substrate interface, which was induced due to mismatch between the crystal lattices, thereby affecting the efficiency. Additionally, numerical simulations regarding the p-n GaAs NW solar cell under uniaxial compression were performed, showing that solar efficiency could be controlled by mechanical deformation and configuration of the wurtzite and zinc blende p-n segments in the NW. The relative solar efficiency was shown to be increased by 6.3% under −0.75% uniaxial compression. These findings demonstrate a way to increase efficiency of GaAs NW-based solar cells via uniaxial mechanical compression.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3