Machine learning for accelerated bandgap prediction in strain-engineered quaternary III–V semiconductors

Author:

Mondal Badal12ORCID,Westermayr Julia13ORCID,Tonner-Zech Ralf1ORCID

Affiliation:

1. Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig 1 , 04103 Leipzig, Germany

2. Fachbereich Physik, Philipps-Universität Marburg 2 , 35032 Marburg, Germany

3. Center for Scalable Data Analytics and Artificial Intelligence 3 , Dresden/Leipzig, Germany

Abstract

Quaternary III–V semiconductors are one of the most promising material classes in optoelectronics. The bandgap and its character, direct or indirect, are the most important fundamental properties determining the performance and characteristics of optoelectronic devices. Experimental approaches screening a large range of possible combinations of III- and V-elements with variations in composition and strain are impractical for every target application. We present a combination of accurate first-principles calculations and machine learning based approaches to predict the properties of the bandgap for quaternary III–V semiconductors. By learning bandgap magnitudes and their nature at density functional theory accuracy based solely on the composition and strain features of the materials as an input, we develop a computationally efficient yet highly accurate machine learning approach that can be applied to a large number of compositions and strain values. This allows for a computationally efficient prediction of a vast range of materials under different strains, offering the possibility of virtual screening of multinary III–V materials for optoelectronic applications.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3