Research on Damage Characteristics of Ultrasonic Vibration-Assisted Grinding of a C/SIC Composite Material

Author:

Wang Dongpo,Liang Qiushi,Xu DongORCID

Abstract

C/SiC composites are the preferred materials for high temperature resistant (usually above 1500 °C) structural parts in aerospace, aviation, shipbuilding, and other industries. When this kind of material component is processed efficiently by grinding, the damage forms of fiber step brittle fracture and fiber pulling out are often produced on the machined surface/subsurface. The existence of these damage forms deteriorates the quality of the machine surface and may reduce the bending strength of materials to a certain extent. Therefore, it is very important to study the mechanism and the damage law of ordinary grinding and ultrasonic vibration-assisted grinding and take reasonable measures to restrain the machining damage. In this paper, the typical damage forms of C/SiC composites during the end and side grinding are explored. The surface and subsurface damage degree of C/SiC composites during grinding and ultrasonic vibration-assisted grinding were compared. The effects of different process parameters on material damage were compared and analyzed. The results show that the damage forms of ordinary grinding and ultrasonic grinding are basically the same. Compared with ordinary grinding, ultrasonic-assisted grinding can reduce surface damage to a certain extent and subsurface damage significantly.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference15 articles.

1. Application of ceramic matrix composites in rocket motor;Zou;J. Solid Rocket. Technol.,2000

2. Research Progress of fiber reinforced silicon Carbide ceramic Matrix Composites;Yi;Chem. Ind. Manag.,2018

3. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: An overview;Naslain;Compos. Sci. Technol.,2004

4. Research progress of New SIC Ceramic Matrix Composites;Zhang;Aeronaut. Manuf. Technol.,2003

5. Research Progress in Grinding of Carbon Fiber Ceramic Matrix Composites;Chen;Aerosp. Mater. Technol.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3