Predictive Modeling of Solar PV Panel Operating Temperature over Water Bodies: Comparative Performance Analysis with Ground-Mounted Installations

Author:

Agrawal Karmendra Kumar1ORCID,Jha Shibani Khanra1ORCID,Mittal Ravi Kant1ORCID,Singh Ajit Pratap1ORCID,Vashishtha Sanjay2,Gupta Saurabh3ORCID,Soni Manoj Kumar4ORCID

Affiliation:

1. Department of Civil Engineering, Birla Institute of Technology & Science, Pilani 333031, Rajasthan, India

2. Firstgreen Consulting Pvt Ltd., Gurgaon 122002, Haryana, India

3. Saub Consulting, Jaipur 302015, Rajasthan, India

4. Department of Mechanical Engineering, Birla Institute of Technology & Science, Pilani 333031, Rajasthan, India

Abstract

Solar panel efficiency is significantly influenced by its operating temperature. Recent advancements in emerging renewable energy alternatives have enabled photovoltaic (PV) module installation over water bodies, leveraging their increased efficiency and associated benefits. This paper examines the operational performance of solar panels placed over water bodies, comparing them to ground-mounted solar PV installations. Regression models for panel temperature are developed based on experimental setups at BITS Pilani, India. Developed regression models, including linear, quadratic, and exponential, are utilized to predict the operating temperature of solar PV installations above water bodies. These models incorporated parameters such as ambient temperature, solar insolation, wind velocity, water temperature, and humidity. Among these, the one-degree regression models with three parameters outperformed the models with four or five parameters with a prediction error of 5.5 °C. Notably, the study found that the annual energy output estimates from the best model had an error margin of less than 0.2% compared to recorded data. Research indicates that solar PV panels over water bodies produce approximately 2.59% more annual energy output than ground-mounted systems. The newly developed regression models provide a predictive tool for estimating the operating temperature of solar PV installations above water bodies, using only three meteorological parameters: ambient temperature, solar insolation, and wind velocity, for accurate temperature prediction.

Funder

Firstgreens Consulting Pvt Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3