Precipitable Water Vapor Retrieval from Shipborne GNSS Observations on the Korean Research Vessel ISABU

Author:

Sohn Dong-Hyo,Choi Byung-KyuORCID,Park Yosup,Kim Yoon Chil,Ku Bonhwa

Abstract

We estimate precipitable water vapor (PWV) from data collected by the low-cost Global Navigation Satellite System (GNSS) receiver at a vessel. The dual-frequency GNSS receiver that the vessel ISABU is equipped with that is operated by the Korea Institute of Ocean Science and Technology. The ISABU served in the Pacific Ocean for scientific research during a period from August 30 to September 21, 2018. It also performs radiosonde observations to obtain a vertical profile of troposphere on the vessel’s path. The GNSS-derived PWV is compared to radiosonde observations and the Atmospheric Infrared Sounder (AIRS) on NASA’s Aqua satellite output. A bias and root-mean-square (RMS) error between shipborne GNSS-PWV and radiosonde-PWV were −1.48 and 5.22 mm, respectively. When compared to the ground GNSS-PWV, shipborne GNSS-PWV has a relatively large RMS error in comparison with radiosonde-PWV. However, the GNSS observations on the vessel are still in good agreement with radiosonde observations. On the other hand, the GNSS-PWV is not well linearly correlated with AIRS-PWV. The RMS error between the two observations was approximately 8.97 mm. In addition, we showed that the vessel on the sea surface has significantly larger carrier phase multipath error compared to the ground-based GNSS observations. This also can result in reducing the accuracy of shipborne GNSS-PWV. However, we suggest that the shipborne GNSS has sufficient potential to derive PWV with the kinematic precise point positioning (PPP) solution on the vessel.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3