Abstract
Polycrystalline diamond (PCD) skiving cutter has dominated research in recent years. However, the traditional methods of fabrication have failed to cut the diamond with high quality. We propose the two-step laser machining process combining roughing machining with orthogonal irradiation and finishing machining with tangential irradiation. In addition, the processing effect and mechanism of different lasers on the diamond were investigated by a finite element analysis. It’s proved that the ultraviolet nanosecond laser is an excellent machining method for the processing of diamond. Furthermore, the effect of the processing parameters on the contour accuracy (Rt) was studied. The result indicates that the Rt value decreases first and then increases as the increase of the line interval, scanning speed and defocusing amount (no matter positive or negative defocus). Further, Raman spectroscopy was applied to characterize the diamond surface under different cutting methods and the flank face of the tool after processing. Finally, a high-quality PCD skiving cutter was obtained with an Rt of 5.6 µm and no phase transition damage.
Funder
Ministry of Science and Technology of the People's Republic of China
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献