Design and Development of a Symbiotic Agrivoltaic System for the Coexistence of Sustainable Solar Electricity Generation and Agriculture

Author:

Kuo Chung-Feng Jeffrey1ORCID,Su Te-Li2,Huang Chao-Yang3,Liu Han-Chang3,Barman Jagadish1,Kar Indira1

Affiliation:

1. Department of Materials Science and Engineering, National Taiwan University of Science and Engineering, Taipei 10617, Taiwan

2. Yunlin Branch, Taiwan Textile Research Institute, Yunlin County 64057, Taiwan

3. Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan

Abstract

The symbiotic photovoltaic (PV) electrofarming system introduced in this study is developed for the PV setup in an agriculture farming land. The study discusses the effect of different PV system design conditions influenced by annual sunhours on agricultural farm land. The aim is to increase the sunhours on the PV panel for optimized electricity generation. Therefore, this study combines the Taguchi method with Grey Relational Analysis (GRA) to optimize the two quality characteristics of the symbiotic electrofarming PV system with the best design parameter combination. The selected multiple quality characteristics are PV power generation and sunhours on farm land. The control factors include location, upright column height, module tilt angle, and PV panel width. First, the Taguchi method is used to populate a L9(34) orthogonal array with the settings of the experimental plan. After the experimental results are obtained, signal-to-noise ratios are calculated, factor response tables and response graphs are drawn up, and analysis of variance is performed to obtain those significant factors which have great impact on the quality characteristics. The experiments show that the parameters which effects power generation are: location, upright column height, module tilt angle, and PV panel width. The ranking of the degree of influence of the control factors on the quality characteristics is location > PV panel width > module tilt angle > upright column height. By controlling these factors, the quality characteristics of the system can be effectively estimated. The results for PV power generation and sunhours on farm land both fall within the 95% CI (confidence interval), which shows that they are reliable and reproducible. The optimal design parameter realized in this research obtains a power generation of 26,497 kWh and a sunshine time of 1963 h. The finding showed that it can help to build a sustainable PV system combined with agriculture cultivation.

Funder

Ministry of Science and Technology of the Republic of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3