A Decision Support Software Application for the Design of Agrophotovoltaic Systems in Republic of Korea

Author:

Kim Youngjin1ORCID,On Yeongjae1,So Junyong1ORCID,Kim Sumin2ORCID,Kim Sojung1ORCID

Affiliation:

1. Department of Industrial and Systems Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea

2. Department of Environmental Horticulture & Landscape Architecture, College of Life Science & Biotechnology, Dankook University, Cheonan-si 31116, Republic of Korea

Abstract

Agrophotovoltaic (APV) systems produce both solar energy and crops, so they are considered a sustainable alternative to traditional solar power plants, which can potentially destroy farmlands. However, it is challenging to diffuse APV systems because of their high installation and operating costs. Thus, to resolve the issue by maximizing the productivity and profits of an APV system, this study aims to propose a mobile-phone-based decision support system (DSS) for a supply chain network design for APV systems in South Korea using satellite imagery incorporating geographic information system (GIS) data. Particularly, polynomial regression models estimating annual corn (Zea mays) yields and the predicted generation of electricity were developed and integrated with the proposed DSS. Field experiment data provided by the APV system at Jeollanamdo Agricultural Research and Extension Services in South Korea were utilized. Two photovoltaic (PV) module types (mono-facial and bi-facial) and three different shading ratios for APV systems (21.3%, 25.6%, and 32.0%) were considered design factors for APV systems. An optimal network structure of 6 candidate APV systems and 15 agricultural markets was devised using the generalized reduced gradient (GRG) method. The profits of the six candidate APV systems are mainly affected by the transportation costs to the markets and the policy of the electricity selling prices. As a result, the proposed supply chain design framework successfully identifies an APV system network with maximum profits from crop production as well as electricity generation.

Funder

National Research Foundation of Korea

Korean government

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3