Raindrop-Aware GAN: Unsupervised Learning for Raindrop-Contaminated Coastal Video Enhancement

Author:

Kim JinahORCID,Huh Dong,Kim Taekyung,Kim JaeilORCID,Yoo Jeseon,Shim Jae-Seol

Abstract

We propose an unsupervised network with adversarial learning, the Raindrop-aware GAN, which enhances the quality of coastal video images contaminated by raindrops. Raindrop removal from coastal videos faces two main difficulties: converting the degraded image into a clean one by visually removing the raindrops, and restoring the background coastal wave information in the raindrop regions. The components of the proposed network—a generator and a discriminator for adversarial learning—are trained on unpaired images degraded by raindrops and clean images free from raindrops. By creating raindrop masks and background-restored images, the generator restores the background information in the raindrop regions alone, preserving the input as much as possible. The proposed network was trained and tested on an open-access dataset and directly collected dataset from the coastal area. It was then evaluated by three metrics: the peak signal-to-noise ratio, structural similarity, and a naturalness-quality evaluator. The indices of metrics are 8.2% (+2.012), 0.2% (+0.002), and 1.6% (−0.196) better than the state-of-the-art method, respectively. In the visual assessment of the enhanced video image quality, our method better restored the image patterns of steep wave crests and breaking than the other methods. In both quantitative and qualitative experiments, the proposed method more effectively removed the raindrops in coastal video and recovered the damaged background wave information than state-of-the-art methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference43 articles.

1. Coastal Environments: An Introduction to the Physical, Ecological, and Cultural Systems of Coastlines;Carter,2013

2. Introduction to Coastal Processes and Geomorphology;Davidson-Arnott,2019

3. The future of nearshore processes research;Elko;Shore Beach,2015

4. Nearshore subtidal bathymetry from time-exposure video images

5. Ocean Wavenumber Estimation From Wave-Resolving Time Series Imagery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3