Author:
Kim Jinah,Kim Taekyung,Oh Sang-Ho,Do Kideok,Ryu Joon-Gyu,Kim Jaeil
Abstract
AbstractAccurate water surface elevation estimation is essential for understanding nearshore processes, but it is still challenging due to limitations in measuring water level using in-situ acoustic sensors. This paper presents a vision-based water surface elevation estimation approach using multi-view datasets. Specifically, we propose a visual domain adaptation method to build a water level estimator in spite of a situation in which ocean wave height cannot be measured directly. We also implemented a semi-supervised approach to extract wave height information from long-term sequences of wave height observations with minimal supervision. We performed wave flume experiments in a hydraulic laboratory with two cameras with side and top viewpoints to validate the effectiveness of our approach. The performance of the proposed models were evaluated by comparing the estimated time series of water elevation with the ground-truth wave gauge data at three locations along the wave flume. The estimated time series were in good agreement within the averaged correlation coefficient of 0.98 and 0.90 on the measurement and 0.95 and 0.85 on the estimation for regular and irregular waves, respectively.
Funder
Ministry of Science and ICT, South Korea
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献