Deep visual domain adaptation and semi-supervised segmentation for understanding wave elevation using wave flume video images

Author:

Kim Jinah,Kim Taekyung,Oh Sang-Ho,Do Kideok,Ryu Joon-Gyu,Kim Jaeil

Abstract

AbstractAccurate water surface elevation estimation is essential for understanding nearshore processes, but it is still challenging due to limitations in measuring water level using in-situ acoustic sensors. This paper presents a vision-based water surface elevation estimation approach using multi-view datasets. Specifically, we propose a visual domain adaptation method to build a water level estimator in spite of a situation in which ocean wave height cannot be measured directly. We also implemented a semi-supervised approach to extract wave height information from long-term sequences of wave height observations with minimal supervision. We performed wave flume experiments in a hydraulic laboratory with two cameras with side and top viewpoints to validate the effectiveness of our approach. The performance of the proposed models were evaluated by comparing the estimated time series of water elevation with the ground-truth wave gauge data at three locations along the wave flume. The estimated time series were in good agreement within the averaged correlation coefficient of 0.98 and 0.90 on the measurement and 0.95 and 0.85 on the estimation for regular and irregular waves, respectively.

Funder

Ministry of Science and ICT, South Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3